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1. Introduction

Regarding real hypersurfaces with parallel curvature tensor, many differential geometers were studied either in complexprojective spaces or in quaternionic projective spaces ([7, 11, 12]). From another perspective, it is interesting to classifyreal hypersurfaces in complex two-plane Grassmannians with parallel shape operator, structure Jacobi operator and Riccitensor (See [5, 6, 13–18]).As an ambient space, a complex two-plane Grassmannian G2(Cm+2) consists of all complex two-dimensional linearsubspaces in Cm+2. This Riemannian symmetric space is the unique compact irreducible Riemannian manifold being
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equipped with both the Kähler structure J and the quaternionic Kähler structure J not containing J. Then, we couldnaturally consider two geometric conditions for hypersurfaces M in G2(Cm+2), namely, that the 1-dimensional distribution[ξ ] = Span{ξ} and the 3-dimensional distribution D⊥ = Span{ξ1, ξ2, ξ3} are both invariant under the shape operator
A of M ([3]), where the Reeb vector field ξ is defined by ξ = −JN. N denotes a local unit normal vector field of M in
G2(Cm+2) and the almost contact 3-structure vector fields ξν are defined by ξν = −JνN (ν = 1, 2, 3).By using the result in Alekseevskii [1], Berndt and Suh [3] proved the following :
Theorem A.
Let M be a connected orientable real hypersurface in G2(Cm+2), m ≥ 3. Then both [ξ ] and D⊥ are invariant under the
shape operator of M if and only if(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2), or(B) m is even, say m = 2n, and M is an open part of a tube around a totally geodesic HPn in G2(Cm+2).
When we consider the Reeb vector field ξ in the expression of the curvature tensor R for a real hypersurface M in
G2(Cm+2), the structure Jacobi operator Rξ can be defined in such as

Rξ (X ) = R(X, ξ)ξ,
for any tangent vector field X on M.By using the structure Jacobi operator Rξ , Jeong, Pérez and Suh considered a notion of parallel structure Jacobi operator,that is, ∇XRξ = 0 for any vector field X on M and gave a non-existence theorem (See [5]).On the other hand, the Reeb vector field ξ is said to be Hopf if it is invariant under the shape operator A. The onedimensional foliation of M by the integral manifolds of the Reeb vector field ξ is said to be the Hopf foliation of M.We say that M is a Hopf hypersurface in G2(Cm+2) if and only if the Hopf foliation of M is totally geodesic. Using theformulas in Section 2 it can be easily checked that M is Hopf if and only if the Reeb vector field ξ is Hopf.Moreover, the authors [6] considered the general notion of D⊥-parallel structure Jacobi operator defined by ∇ξνRξ = 0,
ν = 1, 2, 3, which is weaker than the notion of the parallel structure Jacobi operator mentioned above. They gave anon-existence theorem as follows :
Theorem B.
There do not exist any connected Hopf real hypersurfaces in G2(Cm+2), m≥ 3, with D⊥-parallel structure Jacobi operator
if the principal curvature α is constant along the direction of ξ .

Now, instead of Levi-Civita connection for real hypersurfaces in Kähler manifolds, we consider another new connectionnamed generalized Tanaka-Webster connection (in short, the g-Tanaka-Webster connection) ∇̂(k) for a non-zero realnumber k (See [8]). This new connection ∇̂(k) can be regarded as a natural extension of Tanno’s generalized Tanaka-Webster connection ∇̂ for contact metric manifolds. Actually, Tanno [20] introduced the generalized Tanaka-Websterconnection ∇̂ for contact Riemannian manifolds by using the canonical connection on a nondegenerate, integrable CRmanifold.On the other hand, the original Tanaka-Webster connection ([19, 21]) was given as a unique affine connection on anon-degenerate, pseudo-Hermitian CR manifold associated with the almost contact structure. In particular, if a realhypersurface in a Kähler manifold satisfies φA+Aφ = 2kφ (k 6= 0), then the g-Tanaka-Webster connection ∇̂(k) coincideswith the Tanaka-Webster connection.In [10], using this g-Tanaka-Webster connection ∇̂(k), we considered the notion of Reeb-parallel structure Jacobi operator
in the generalized Tanaka-Webster connection, that is, ∇̂(k)

ξ Rξ = 0. We gave a non-existence theorem as follows:
Theorem C.
There does not exist any Hopf hypersurface in a complex two-plane Grassmannian G2(Cm+2), m ≥ 3, with Reeb-parallel
structure Jacobi operator in the generalized Tanaka-Webster connection.
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In this paper, motivated by Theorems B and C, we consider another new notion for g-Tanaka-Webster parallelism of thestructure Jacobi operator on a real hypersurface M in G2(Cm+2), when the structure Jacobi operator Rξ of M satisfies(∇̂(k)
X Rξ )Y = 0 for any X ∈ D⊥ and any tangent vector field Y in M. In this case, the structure Jacobi operator is saidto be a D⊥-parallel structure Jacobi operator in the generalized Tanaka-Webster connection. Naturally, such a notionof parallelism is a generalized condition that is weaker than usual parallelism of the structure Jacobi operator in thegeneralized Tanaka-Webster connection.

Main Theorem.
Let M be a connected orientable Hopf hypersurface in a complex two-plane Grassmannian G2(Cm+2), m ≥ 3. If the
structure Jacobi operator Rξ is D⊥-parallel in the generalized Tanaka-Webster connection, M is an open part of a tube
around a totally geodesic HPn in G2(Cm+2), where m = 2n.

2. Preliminaries

Basic material about complex two-plane Grassmannians is well known (See [2–4]). This complex two-plane Grassmannian
G2(Cm+2) is a Riemannian homogeneous space, even a Riemannian symmetric space. Using Lie algebra, we normalize
g so that the maximal sectional curvature of (G2(Cm+2), g) is eight.A canonical local basis {J1, J2, J3} of J consists of three local almost Hermitian structures Jν in J such that JνJν+1 =
Jν+2 = −Jν+1Jν , where the index ν is taken modulo three. Since J is parallel with respect to the Riemannian connection
∇̃ of (G2(Cm+2), g), there exist for any canonical local basis {J1, J2, J3} of J three local one-forms q1, q2, q3 such that

∇̃X Jν = qν+2(X )Jν+1 − qν+1(X )Jν+2 (1)
for all vector fields X on G2(Cm+2).Furthermore, the Riemannian curvature tensor R̃ of G2(Cm+2) is locally given by

R̃(X, Y )Z = g(Y , Z )X − g(X, Z )Y + g(JY , Z )JX − g(JX, Z )JY − 2g(JX, Y )JZ
+ 3∑

ν=1
{
g(JνY , Z )JνX − g(JνX, Z )JνY − 2g(JνX, Y )JνZ}+ 3∑

ν=1
{
g(JνJY , Z )JνJX − g(JνJX, Z )JνJY}, (2)

where {J1, J2, J3} denotes a canonical local basis of J.Now, let M be a real hypersurface of G2(Cm+2), that is, a hypersurface of G2(Cm+2) with real codimension one. Theinduced Riemannian metric on M is also denoted by g and ∇ denotes the Riemannian connection of (M,g). Let N bea local unit normal vector field of M and A the shape operator of M with respect to N. Let us put
JX = φX + η(X )N, JνX = φνX + ην(X )N (3)

for any tangent vector field X of a real hypersurface M in G2(Cm+2). From the Kähler structure J of G2(Cm+2) thereexists an almost contact metric structure (φ, ξ, η, g) induced on M in such a way that
φ2X = −X + η(X )ξ, η(ξ) = 1, φξ = 0, η(X ) = g(X, ξ) (4)

for any vector field X on M. Furthermore, let {J1, J2, J3} be a canonical local basis of J. Then the quaternionic Kählerstructure Jν of G2(Cm+2), together with the condition JνJν+1 = Jν+2 = −Jν+1Jν , induces an almost contact metric 3-structure(φν , ξν , ην , g) on M as follows:
φ2
νX = −X + ην(X )ξν , ην(ξν) = 1, φνξν = 0,

φν+1ξν = −ξν+2, φνξν+1 = ξν+2,
φνφν+1X = φν+2X + ην+1(X )ξν ,
φν+1φνX = −φν+2X + ην(X )ξν+1

(5)
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for any vector field X tangent to M. Moreover, from the commuting property of JνJ = JJν , ν = 1, 2, 3, the relation betweenthese two contact metric structures (φ, ξ, η, g) and (φν , ξν , ην , g), ν = 1, 2, 3, can be given by
φφνX = φνφX + ην(X )ξ − η(X )ξν ,
ην(φX ) = η(φνX ), φξν = φνξ.

(6)
On the other hand, from the Kähler structure J, that is, ∇̃J = 0 and the quaternionic Kähler structure Jν (see (1)),together with Gauss and Weingarten formulas it follows that

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ, ∇Xξ = φAX, (7)
∇Xξν = qν+2(X )ξν+1 − qν+1(X )ξν+2 + φνAX, (8)

(∇Xφν)Y = −qν+1(X )φν+2Y + qν+2(X )φν+1Y + ην(Y )AX − g(AX, Y )ξν . (9)
Using the above expression for the curvature tensor R̃ of G2(Cm+2), the equations of Gauss and Codazzi are respectivelygiven by

R(X, Y )Z = g(Y , Z )X − g(X, Z )Y + g(φY , Z )φX − g(φX, Z )φY − 2g(φX, Y )φZ
+ 3∑

ν=1
{
g(φνY , Z )φνX − g(φνX, Z )φνY − 2g(φνX, Y )φνZ}

+ 3∑
ν=1
{
g(φνφY , Z )φνφX − g(φνφX, Z )φνφY}

−
3∑

ν=1
{
η(Y )ην(Z )φνφX − η(X )ην(Z )φνφY}

−
3∑

ν=1
{
η(X )g(φνφY , Z )− η(Y )g(φνφX, Z )}ξν + g(AY , Z )AX − g(AX, Z )AY ,

(10)

where R denotes the curvature tensor of a real hypersurface M in G2(Cm+2) and
(∇XA)Y − (∇YA)X = η(X )φY − η(Y )φX − 2g(φX, Y )ξ

+ 3∑
ν=1
{
ην(X )φνY − ην(Y )φνX − 2g(φνX, Y )ξν}

+ 3∑
ν=1
{
ην(φX )φνφY − ην(φY )φνφX}+ 3∑

ν=1
{
η(X )ην(φY )− η(Y )ην(φX )}ξν .

(11)

Now, let us introduce the notion of g-Tanaka-Webster connection ∇̂(k) on real hypersurfaces in Kähler manifolds (See [8]).As stated in the introduction, the Tanaka-Webster connection is the canonical affine connection defined on a non-degenerate pseudo-Hermitian CR manifold (See [19, 21]). For contact metric manifolds, their associated CR structuresare pseudo-Hermitian and strongly pseudo-convex, but they are not integrable in general. In this situation, Tanno [20]defined a new connection ∇̂ given by
∇̂XY =∇XY + (∇Xη)(Y )ξ − η(Y )∇Xξ − η(X )φY (12)

for contact metric manifolds as a generalization of the original Tanaka-Webster connection. From such a point of view,we called this new connection ∇̂ the g-Tanaka-Webster one. From this, we know that the g-Tanka-Webster connection
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∇̂ coincides with the Tanaka-Webster connection if the associated CR structure is integrable. Moreover, since a realhypersurface M of a Kähler manifold satisfies Aφ + φA = 2φ if and only if M is contact metric, we have anotherg-Tanaka-Webster connection ∇̂(k) for M as an extension of Tanno’s connection ∇̂. Actually, by substituting (7) into(12), the generalized Tanaka-Webster connection ∇̂(k) for M is defined by
∇̂(k)

X Y =∇XY + g(φAX, Y )ξ − η(Y )φAX − kη(X )φY (13)
for a non-zero real number k (See [8]) (Note that ∇̂(k) is invariant under the choice of the orientation. Namely, we maytake −k instead of k in (13) for the opposite orientation −N).
3. Key Lemma

Let us denote by R(X, Y )Z the curvature tensor of M in G2(Cm+2). Then the structure Jacobi operator Rξ of M in
G2(Cm+2) can be defined by RξX = R(X, ξ)ξ for any vector field X ∈ TxM = D⊕D⊥, x ∈ M.In [5] and [6], by using the structure Jacobi operator Rξ , the authors obtained

(∇XRξ )Y = −g(φAX, Y )ξ − η(Y )φAX
−

3∑
ν=1
[
g(φνAX, Y )ξν − 2η(Y )ην(φAX )ξν + ην(Y )φνAX

+ 3{g(φνAX, φY )φνξ + η(Y )ην(AX )φνξ + ην(φY )(φνφAX − αη(X )ξν)}
+ 4ην(ξ){ην(φY )AX − g(AX, Y )φνξ}+ 2ην(φAX )φνφY ]+ η((∇XA)ξ)AY + α(∇XA)Y − η((∇XA)Y )Aξ − g(AY , φAX )Aξ − η(AY )(∇XA)ξ − η(AY )AφAX.

(14)

From this, by using (13), together with the fact that M is Hopf, it becomes
(∇̂(k)

X Rξ )Y = − 3∑
ν=1
[
g(φνAX, Y )ξν − η(Y )ην(φAX )ξν + ην(Y )φνAX

+ 3{g(φνAX, φY )φνξ + η(Y )ην(AX )φνξ + ην(φY )(φνφAX − αη(X )ξν)}
+ 4ην(ξ){ην(φY )AX − g(AX, Y )φνξ}+ 2ην(φAX )φνφY+ ην(Y )ην(φAX )ξ − ην(ξ)η(Y )ην(φAX )ξ+ 3η(φνY )g(φAX,φνξ)ξ + ην(ξ)g(φAX,φνφY )ξ
− ην(Y )ην(ξ)φAX + η2

ν(ξ)η(Y )φAX − ην(ξ)η(φνφY )φAX
− kη(X )ην(Y )φξν − 4kη(X )η(φνY )ην(ξ)ξ − 4kη(X )η(φνY )ξν+ 3η(Y )η(φνφAX )φνξ − η(Y )ην(ξ)φνAX + αη(X )η(Y )ην(ξ)φνξ+ 3kη(X )η(φνφY )φνξ + kη(X )η(Y )ην(ξ)φνξ]+ η((∇XA)ξ)AY + α(∇XA)Y − αη((∇XA)Y )ξ
− αη(Y )(∇XA)ξ − αkη(X )φAY + αkη(X )AφY

(15)

for any tangent vector fields X and Y on M.Let us assume that the structure Jacobi operator Rξ of a Hopf hypersurface M in a complex two-plane Grassmannmanifold G2(Cm+2) is D⊥-parallel in the generalized Tanaka-Webster connection, that is,
(∇̂(k)

X Rξ )Y = 0 (∗)
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for any X ∈ D⊥ and any tangent vector field Y on M.Before getting our result, it is an important step to show that the Reeb vector field ξ belongs to either the distribution
D or the distribution D⊥ such that TM = D⊕D⊥ in G2(Cm+2) when the structure Jacobi operator is D⊥-parallel in thegeneralized Tanaka-Webster connection.From now on, unless otherwise stated, we may put the Reeb vector field ξ as follows :

ξ = η(X0)X0 + η(ξ1)ξ1 (∗∗)
for some unit vector fields X0 ∈ D and ξ1 ∈ D⊥.Now using the condition (∗) and (∗∗), we prove the following :
Lemma 3.1.
Let M be a Hopf hypersurface in a complex two-plane Grassmannian G2(Cm+2), m ≥ 3, with D⊥-parallel structure Jacobi
operator in the generalized Tanaka-Webster connection. Then the Reeb vector field ξ belongs to either the distribution
D or the distribution D⊥.

Proof. By taking the inner product with ξ in (15), it becomes
8kη(X )η(φ1Y )η1(ξ) = 0

for any X ∈ D⊥ and any tangent vector field Y on M.Thus putting X = ξ1 ∈ D⊥ and substituting Y with φ1ξ , it follows
−8kη2(ξ1)η2(X0) = 0.

Since k is a nonzero real number, we get η(X0) = 0 or η1(ξ) = 0. It means that ξ belongs to either the distribution Dor the distribution D⊥. Consequently, this completes the proof of our Lemma.
4. Proof of Main Theorem

Let us consider a Hopf hypersurface M in G2(Cm+2) with D⊥-parallel structure Jacobi operator Rξ in the generalizedTanaka-Webster connection, that is, (∇̂(k)
X Rξ )Y = 0 for any X ∈ D⊥ and any tangent vector field Y on M. Then byLemma 3.1 we shall divide our consideration in two cases depending on whether the Reeb vector field ξ belongs to thedistribution D⊥ or the distribution D.First of all, we consider the case ξ ∈ D⊥. Without loss of generality, we may put ξ = ξ1. Using this notion of

D⊥-parallel structure Jacobi operator in the generalized Tanaka-Webster connection, we get the following :
Lemma 4.1.
If the Reeb vector field ξ belongs to the distribution D⊥, then there does not exist any Hopf hypersurface M in a
complex two-plane Grassmannian G2(Cm+2), m ≥ 3, with D⊥-parallel structure Jacobi operator in the generalized
Tanaka-Webster connection.
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Proof. Since by assumption ξ belongs to the distribution D⊥, putting X = ξ in (15) and using (6), we have
0 =− {αg(φ2ξ, Y )ξ2 + αg(φ3ξ, Y )ξ3 + αη2(Y )φ2ξ + αη3(Y )φ3ξ+ 3αg(φ2ξ, φY )φ2ξ + 3αg(φ3ξ, φY )φ3ξ − 3αη2(φY )ξ2
− 3αη3(φY )ξ3 − kη2(Y )φξ2 − kη3(Y )φξ3 − 4kη(φ2Y )ξ2
− 4kη(φ3Y )ξ3 + 3kη(φ2φY )φ2ξ + 3kη(φ3φY )φ3ξ}+ η((∇ξA)ξ)AY + α(∇ξA)Y − αη((∇ξA)Y )ξ
− αη(Y )(∇ξA)ξ − αkφAY + αkAφY=− 8kη2(Y )ξ3 + 8kη3(Y )ξ2 + η((∇ξA)ξ)AY + α(∇ξA)Y
− αη((∇ξA)Y )ξ − αη(Y )(∇ξA)ξ − αkφAY + αkAφY

for any tangent vector field Y on M. Taking the inner product with X , we have
0 = g((∇̂(k)

ξ Rξ )Y , X ) = −8kη2(Y )η3(X ) + 8kη3(Y )η2(X ) + η((∇ξA)ξ)g(AY , X ) + αg((∇ξA)Y , X )
− αη(X )η((∇ξA)Y )− αη(Y )g((∇ξA)ξ, X )− αkg(φAY , X ) + αkg(AφY , X ) (16)

for any tangent vector fields X and Y on M. Interchanging X with Y in the above equation, we get
0 = g((∇̂(k)

ξ Rξ )X, Y ) = −8kη2(X )η3(Y ) + 8kη3(X )η2(Y ) + η((∇ξA)ξ)g(AX, Y ) + αg((∇ξA)X, Y )
− αη(Y )η((∇ξA)X )− αη(X )g((∇ξA)ξ, Y )− αkg(φAX, Y ) + αkg(AφX, Y ) (17)

for any tangent vector fields X and Y on M. Thus subtracting (17) from (16), we obtain
0 = g((∇̂(k)

ξ Rξ )Y , X )− g((∇̂(k)
ξ Rξ )X, Y ) = 16kη2(X )η3(Y )− 16kη3(X )η2(Y ) (18)

for any tangent vector fields X and Y on M. Since k is a nonzero real number, the equation (18) reduces to
η2(X )η3(Y )− η3(X )η2(Y ) = 0

for any tangent vector fields X and Y on M. Replacing X with ξ2 and Y with ξ3, we have
η2(ξ2)η3(ξ3) = 0. (19)

Let {e1, e2, · · ·, e4m−4, e4m−3, e4m−2, e4m−1} be an orthonormal basis for a tangent vector space TxM at any point x ∈ M.Without loss of generality, we may put e4m−3 = ξ1, e4m−2 = ξ2 and e4m−1 = ξ3. Since the dimension of M is equal to4m− 1, the above equation (19) gives a contradiction. So, we have proved our Lemma 4.1.
Next we consider the other case ξ ∈ D. Using Theorem A, Lee and Suh [9] gave a characterization of real hypersurfacesof type (B) in G2(Cm+2) in terms of the Reeb vector field ξ as follows :
Theorem D.
Let M be a connected orientable Hopf hypersurface in G2(Cm+2), m ≥ 3. Then the Reeb vector field ξ belongs to the
distribution D if and only if M is locally congruent to an open part of a tube around a totally geodesic HPn in G2(Cm+2),
m = 2n.
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From Lemma 3.1 and Theorem D, we see that M is locally congruent to a model space of type (B) in Theorem A underthe assumption of our Main Theorem given in the introduction.Hence it remains to check whether the structure Jacobi operator Rξ of a real hypersurface of type (B) satisfies thecondition (∗) or not. In order to do this, we introduce a proposition concerning the eigenspaces of the model space oftype (B) with respect to the shape operator. The following proposition [3] is well known : a real hypersurface M oftype (B) has five distinct constant principal curvatures as follows,
Proposition.
Let M be a connected real hypersurface in G2(Cm+2). Suppose that AD ⊂ D, Aξ = αξ , and ξ is tangent to D. Then
the quaternionic dimension m of G2(Cm+2) is even, say m = 2n, and M has five distinct constant principal curvatures

α = −2 tan(2r), β = 2 cot(2r), γ = 0, λ = cot(r), µ = − tan(r)
with some r ∈ (0, π/4). The corresponding multiplicities are

m(α) = 1, m(β) = 3 = m(γ), m(λ) = 4n− 4 = m(µ)
and the corresponding eigenspaces are

Tα = Rξ = Span{ξ},
Tβ = JJξ = Span{ξν | ν = 1, 2, 3},
Tγ = Jξ = Span{φνξ | ν = 1, 2, 3},
Tλ, Tµ,

where
Tλ ⊕ Tµ = (HCξ)⊥, JTλ = Tλ, JTµ = Tµ, JTλ = Tµ.

The distribution (HCξ)⊥ is the orthogonal complement of HCξ where

HCξ = Rξ ⊕ RJξ ⊕ Jξ ⊕ JJξ.

To check this problem, we suppose thatM has a D⊥-parallel structure Jacobi operator in the generalized Tanaka-Websterconnection. By putting ξ ∈ D in (15), this equation becomes
(∇̂(k)

X Rξ )Y = − 3∑
ν=1
[
βg(φνX, Y )ξν + βην(Y )φνX

+ 3{βg(φνX,φY )φνξ + βη(Y )ην(X )φνξ + βην(φY )φνφX}
+ 3βη(φνY )g(φX,φνξ)ξ + 3βη(Y )η(φνφX )φνξ]+ α(∇XA)Y − αη((∇XA)Y )ξ − αη(Y )(∇XA)ξ

(20)

for any X ∈ D⊥ and any tangent vector field Y on M.
Case I : Y = ξ ∈ Tα .By putting Y = ξ in (20) and using (4) and (6), we have

−
3∑

ν=1
{3βην(X )φνξ − 3βην(X )φνξ} = 0.
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Case II : Y ∈ Tβ , where Tβ = Span{ ξi | i = 1, 2, 3 }.By setting Y = ξi, i = 1, 2, 3 in (20) and using (5), we know
−

3∑
ν=1
{
βg(φνX, ξi)ξν + βην(ξi)φνX}+ α(∇XA)ξi − αη((∇XA)ξi)ξ

= −βg(φiX, ξi)ξi − βg(φi+1X, ξi)ξi+1 − βg(φi+2X, ξi)ξi+2 − βφiX + α(∇XA)ξi − αη((∇XA)ξi)ξ= −βg(X, ξi+2)ξi+1 + βg(X, ξi+1)ξi+2 − βφiX + α(∇XA)ξi − αη((∇XA)ξi)ξ
(21)

for any X ∈ D⊥.On the other hand, differentiating Aξi = βξi along X and using (8), we get
(∇XA)ξi = β∇Xξi − A∇Xξi = β

{
qi+2(X )ξi+1 − qi+1(X )ξi+2 + φiAX

}
− A

{
qi+2(X )ξi+1 − qi+1(X )ξi+2 + φiAX

}
= β2φiX − βAφiX = 0,

because φiX ∈ Tβ . Then the equation (21) is written as
− βg(X, ξi+2)ξi+1 + βg(X, ξi+1)ξi+2 − βφiX. (22)

Subcase II-1 : X = ξi in (22).
−βg(ξi, ξi+2)ξi+1 + βg(ξi, ξi+1)ξi+2 − βφiξi = 0.

Subcase II-2 : X = ξi+1 in (22).
−βg(ξi+1, ξi+2)ξi+1 + βg(ξi+1, ξi+1)ξi+2 − βφiξi+1 = 0,

because φiξi+1 = ξi+2.Subcase II-3 : X = ξi+2 in (22).
−βg(ξi+2, ξi+2)ξi+1 + βg(ξi+2, ξi+1)ξi+2 − βφiξi+2 = 0,

because φiξi+2 = −ξi+1.Summing up the above three subcases, we deduce that the structure Jacobi operator Rξ of M is D⊥-parallel on Tβ inthe generalized Tanaka-Webster connection.
Case III : Y ∈ Tγ , where Tγ = Span{φiξ | i = 1, 2, 3 }.By putting Y = φiξ in (20) and using φνX ∈ Tβ and (6), we have
−

3∑
ν=1
{
− 3βg(φνX, ξi)φνξ + 3βην(φφiξ)φνφX + 3βη(φνφiξ)g(φX,φνξ)ξ}+ α(∇XA)φiξ − αη((∇XA)φiξ)ξ

= 3βg(X, ξi+2)φi+1ξ − 3βg(X, ξi+1)φi+2ξ + 3βφiφX + 3βg(X, ξi)ξ + α(∇XA)φiξ − αη((∇XA)φiξ)ξ (23)
for any X ∈ D⊥.On the other hand, differentiating Aφiξ = γφiξ along X and using (9), we get

(∇XA)φiξ = −βAφiφX.
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Therefore, the equation (23) can be written as
3βg(X, ξi+2)φi+1ξ − 3βg(X, ξi+1)φi+2ξ + 3βφiφX + 3βg(X, ξi)ξ − αβAφiφX − α2βg(X, ξi)ξ. (24)

By using (5) and (6), we check easily the following subcases.Subcase III-1 : X = ξi in (24).
3βg(ξi, ξi+2)φi+1ξ − 3βg(ξi, ξi+1)φi+2ξ + 3βφiφξi + 3βg(ξi, ξi)ξ − αβAφiφξi − α2βg(ξi, ξi)ξ = 0.

Subcase III-2 : X = ξi+1 in (24).
3βg(ξi+1, ξi+2)φi+1ξ − 3βg(ξi+1, ξi+1)φi+2ξ + 3βφiφξi+1 + 3βg(ξi+1, ξi)ξ − αβAφiφξi+1 − α2βg(ξi+1, ξi)ξ = 0.

Subcase III-3 : X = ξi+2 in (24).
3βg(ξi+2, ξi+2)φi+1ξ − 3βg(ξi+2, ξi+1)φi+2ξ + 3βφiφξi+2 + 3βg(ξi+2, ξi)ξ − αβAφiφξi+2 − α2βg(ξi+2, ξi)ξ = 0.

From above three subcases, we note that the structure Jacobi operator Rξ of M is D⊥-parallel on Tγ in the generalizedTanaka-Webster connection.
Case IV : Y ∈ Tλ ⊕ Tµ .By putting Y ∈ Tλ ⊕ Tµ in (20), we have

α(∇XA)Y − αη((∇XA)Y )ξ (25)
for any X = ξi ∈ D⊥.On the other hand, using the Codazzi equation (11), we obtain

(∇ξiA)Y = (∇YA)ξi + 3∑
ν=1 ην(ξi)φνY .

And by differentiating Aξi = βξi along Y and using (8), we get
(∇YA)ξi = β∇Y ξi − A∇Y ξi = βφiAY − AφiAY .

Since the structure Jacobi operator must be g-Tanaka-Webster D⊥-parallel, the equation (25) is written as
αβφiAY − αAφiAY + αφiY − αβη(φiAY )ξ + αη(AφiAY )ξ = 0. (26)

Subcase IV-1 : Y ∈ Tλ.By setting Y ∈ Tλ in (26), we get
αβλφiY − αλ2φiY + αφiY − αβλη(φiY )ξ + α2λη(φiY )ξ = 0,

because φiY ∈ Tλ.
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By taking the inner product with φiY and using principal curvatures in the above proposition, we obtain
α(βλ− λ2 + 1) = 0.

Subcase IV-2 : Y ∈ Tµ .By setting Y ∈ Tµ in (26), we know
αβµφiY − αµ2φiY + αφiY − αβµη(φiY )ξ + α2µη(φiY )ξ = 0.

Similarly, we have
α(βµ − µ2 + 1) = 0.

From the above two subcases, we note that the structure Jacobi operator Rξ of M is D⊥-parallel on Tλ ⊕ Tµ in thegeneralized Tanaka-Webster connection.Hence summing up these assertions, we have given a complete proof of our main theorem in the introduction.
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